
1.  Introduction
Over 75% of global rainfall occurs over the ocean (Trenberth et al., 2007), and this precipitation plays an impor-
tant role in the surface freshwater flux, upper ocean salinity, and upper ocean stability (Prakash et al., 2012; 
Ramesh Kumar & Schulz, 2002). Understanding the accuracy and utility of satellite-based precipitation estimates 
(SPEs) over oceans is necessary to advance our ability to monitor and predict variations in the global energy and 
hydrologic cycles that drive weather and climate. For example, precipitation-induced buoyancy fluxes impact 
vertical ocean density gradients and ocean mixed layer salinity structure, in turn suppressing ocean turbulence 
and influencing ocean circulations and heat content (Kucera & Klepp, 2022; Yang et al., 2015). Depending on the 
rain rate (RR) intensity relative to surface stress and cooling, impacts of freshwater flux on the ocean surface can 
last for hours to days (Asher et al., 2014; Drushka et al., 2016; Reverdin et al., 2020; Thompson et al., 2019), and 
can contribute to the formation of larger-scale, ∼10–50 m depth barrier layers that last weeks to months (Drushka 
et al., 2012; Lukas & Lindstrom, 1991; Sprintall & Tomczak, 1992). Additionally, rain, particularly in the tropics, 
can cool the ocean surface, inducing a sensible heat flux to the atmosphere on the order of 50–200 W m −2 that 
influences both sea surface and air temperature (Gosnell et al., 1995).

Validating SPEs over ocean is challenging because operational in-situ measurements of oceanic precipitation 
are generally limited to gauges on a relatively small number of moored buoys and research vessels, most of 
which are in relatively high-precipitation tropical regions (Maggioni et al., 2016; Prakash et al., 2018; Sapiano 
& Arkin, 2009; Wu & Wang, 2019). These gauges are susceptible to undercatch due to wind, platform motion, 
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turbulence around the ship structure, intermittent data outages, and vandalism (Kucera & Klepp, 2022; Maggioni 
et al., 2016; Wu & Wang, 2019; Yang et al., 2015). Observations from the Ocean Rainfall And Ice-phase precip-
itation measurement Network (OceanRAIN) aim to overcome the shortcomings of gauges by measuring precipi-
tation with optical disdrometers on eight ships that traversed the global oceans from June 2010 through December 
2018 (Klepp, 2015; Klepp et al., 2018; Kucera & Klepp, 2022), thus providing more geographic coverage than 
stationary moored buoys. Recently, 12 years of research-based observations from passive aquatic listeners (PALs) 
– hydrophones capable of detecting the unique frequency of raindrops falling with different intensities on the 
ocean surface – were reprocessed and made available for use (Yang et al., 2015). Since 2011, 58 PALs have been 
deployed on moorings and drifting Argo floats, however their data has not been widely used outside of field 
campaigns.

Satellite-based precipitation estimates can provide near-global RR estimates at relatively high spatial and tempo-
ral resolution. Such products typically combine retrievals from multiple satellites, often combined with motion 
vectors and bias correction using in situ measurements. While many studies have sought to validate SPEs over 
ocean (e.g., Kucera & Klepp, 2022; Maggioni et al., 2016; Prakash et al., 2018; Wu & Wang, 2019), this evalu-
ation remains less comprehensive than over land due to the sparseness of in-situ measurements. Surface-based 
radars located on islands or near coastlines can somewhat increase the data availability for oceanic validation 
of SPE, however coastal transitions can introduce artifacts in satellite precipitation retrievals (Carr et al., 2015; 
Derin et al., 2021; Wolff & Fisher, 2008). Ship-based radars have also been deployed but typically have short 
data records (∼1 month).

Understanding the performance of SPEs over the ocean can help improve our understanding of the role precip-
itation plays in global air-sea interaction, physical oceanography, and the coupled weather and climate system. 
Here, we evaluate the performance of several SPEs using in-situ PAL measurements. Like many in-situ oceanic 
observation networks, the PALs provide high temporal resolution RR estimates but represent only a small portion 
of the vast ocean surface. Unlike other point-based observations, RR retrieved from PALs have a spatial footprint 
similar to the native resolution of gridded SPEs (∼5 km).

2.  Data
2.1.  Passive Aquatic Listeners

PALs have been deployed on drifting Argo floats (Riser et al., 2008; Roemmich et al., 2019) and stationary moor-
ings across the global oceans. The PAL records an ambient noise time series which is converted to a frequency 
spectrum over 1–50 kHz, where the dominant noise sources are rain, wind, and anthropogenic sources like ship-
ping and oil drilling. Multivariate analysis using sound pressure levels (SPL) at multiple frequencies combined 
with the slope between SPLs at different frequencies is used to classify the distinctive sound source (for details, 
see Yang et al., 2015). For each ambient noise data point, classification and estimation is exclusive, that is, data 
classified as “rain” is only used to estimate RR while those classified as “wind only” are only used to estimate 
wind speed. This rule is designed to ensure good estimation of wind speed since rain noise may overwhelm the 
noise level generated by wind. Both RR and wind speed estimates from PALs mounted on stationary moorings 
have been compared to co-located surface rain and wind speed observations, with favorable results demonstrat-
ing the fidelity of the PAL-based RR and wind speed estimates (Ma & Nystuen, 2005; Nystuen, 2001; Yang 
et al., 2015).

Argo floats drift with surrounding ocean currents, remaining at 1-km depth for approximately 9 days between each 
vertical profile and surface data telemetering period. While drifting at depth, PALs record data every 2–9 min 
depending on classification results (classification of current data point as drizzle, heavy rain, or wind determines 
whether the next sample will be recorded at a 4, 2, or 8 min interval, respectively). The circular surface listen-
ing area sampled by PAL has diameter approximately five times its depth, resulting in a 5 km surface footprint 
for PALs drifting at 1 km depth. PALs on moorings have been deployed at variable depths, however only those 
deployed at 1 km depth are considered in this study. The PAL's sampling strategy provides a spatial resolution 
ideal for comparison with high resolution gridded SPEs, which have grid spacing <=10 km every 0.5–1 hr. The 
archive of PAL wind speed and rain rate data from 2011-present was recently reprocessed in NetCDF format with 
uniform 1-min time steps and linearly interpolated float location between Global Positioning System (GPS) fixes 
(Thompson et al., 2023).
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PALs have been deployed as part of field campaigns including Aquarius, two National Aeronautics and Space 
Administration (NASA) Salinity Processes in the Upper Ocean Regional Study (SPURS) campaigns (Bingham 
et  al.,  2019; Lindstrom et  al.,  2017,  2019), and National Oceanic and Atmospheric Administration (NOAA) 
Tropical Pacific Observing System (TPOS). PALs remain deployed for a period of 1–4 years, so the number of 
PALs available at any given time is highly variable. Figure 1a shows the monthly count of deployed PALs from 
2011 to 2018. The availability of PAL data peaks in 2013–2015, corresponding to the SPURS-1 campaign in the 
tropical Atlantic Ocean. Figure 1b shows the trajectory of PALS during this period. While the coverage of the 
PALs is mostly limited to the Northern Hemisphere tropics, they are also found in the tropical Southern Pacific 
Ocean and off both coasts of North America. Because of the relatively large number of available pals (20+) and 
quasi-global coverage, we focus our evaluation on the period 2013–2015.

2.2.  Satellite-Based Precipitation Estimates

Three SPEs are evaluated in this study. The Climate Prediction Center (CPC) Morphing Technique (CMORPH) 
and Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG) algorithms mainly 
use observations from passive microwave (PMW) radiometers on low earth orbiting (LEO) satellites, while the 
Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN)—
Dynamic Infrared Rain Rate (PDIR-Now) product uses only infrared brightness temperature (Tb) measurements 
from Geostationary satellites (GEO-IR).

2.2.1.  CMORPH V1.0

The CMORPH precipitation product (Xie et al., 2019) is available globally at 30-min time steps with 8 km grid 
spacing. CMORPH uses retrieved instantaneous RR from PMW radiometers on LEO satellites combined with cloud 
motion vectors derived from GEO-IR satellite imagery. In the “morphing” technique, retrieved RR from the PMW 
is interpolated both forwards and backwards in time using the derived motion vectors to determine the shape and 

Figure 1.  (a) Number of PALs deployed monthly from 2011 through 2018. Gray dashed line denotes n = 20. (b) Location of PALs deployed from 2013 to 2015 that are 
used in this study. Different colors are used for each PAL to aid visibility.
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location of precipitation features in between LEO overpasses (Joyce et al., 2004). CPC daily gauge analysis is used to 
bias-correct the multisensor RR over land, while probability density function (PDF) matching against monthly precip-
itation analysis from the Global Precipitation Climatology Project (GPCP) is performed over ocean (Xie et al., 2017). 
Full descriptions of the CMORPH algorithm and products are given in Joyce et al. (2004) and Xie et al. (2017).

2.2.2.  IMERG V6 Final

IMERG (Huffman, Bolvin, et al., 2019; Huffman, Stocker, et al., 2019) is available globally at 0.1° grid spacing 
(approximately 10 km) and 30 min temporal resolution. Like CMORPH, IMERG interpolates RR from PMW 
satellites in time and space using motion vectors between individual LEO satellite overpasses. IMERG includes 
intercalibration of the PMW-based RR estimates to help reduce uncertainties due to slight sensor differences 
among the PMW constellation. Motion vectors are derived from numerically modeled total precipitable water 
vapor fields. Additionally, PMW-calibrated IR-based precipitation estimates from the PERSIANN Cloud Classifi-
cation System (CCS) are incorporated using the CMORPH-Kalman Filter (Tan et al., 2019). While monthly gauge 
data from various sources is used to reduce biases over land (Huffman, Bolvin, et al., 2019; Huffman, Stocker, 
et al., 2019), no gauge-based bias correction is performed over ocean due to the scarcity of available observations. 
Three versions of IMERG are available with varying latency: IMERG Early, IMERG Late, and IMERG Final. 
IMERG Final includes the most available PMW retrievals and bias correction so is selected here for analysis.

2.2.3.  PDIR-Now

The PDIR-Now data set is the most recent high-resolution, low-latency PERSIANN precipitation product, provid-
ing hourly quasi-global (60°N-S) RR at 0.04° (approximately 4 km) grid spacing. Unlike IMERG and CMORPH, 
RR from PDIR-Now is based only on observations from GEO-IR. PDIR-Now surface RR estimates use relation-
ships between IR Tbs and RR that are calculated by a neural network trained on IMERG Merged PMW-only RR 
retrievals. The Tb-RR relationships are further refined using precipitation climatologies from Worldclim2 and 
PERSIANN-Climate Data Record over land and ocean, respectively. Full details of PDIR-Now can be found in 
Nguyen, Shearer et al. (2020) and Nguyen, Ombadi, et al. (2020).

3.  Methods
PAL's minute-scale RR were averaged to 0.5, 1, 6, and 24 hr for comparison to the SPEs at their native reso-
lutions and these longer timescales. Previous studies (Tan et  al.,  2017; Wu & Wang, 2019) have shown that 
SPEs, particularly IMERG, compare more favorably with in-situ surface measurements when averaged to larger 
spatiotemporal scales. While PAL point measurements cannot be aggregated to coarser spatial resolution, we do 
perform comparisons at coarser temporal resolution.

SPE products are matched to the average latitude and longitude of the PAL over the averaging period. The PALs 
do not move more than 3 km per day in O 1 cm/s speed 1-km depth ocean currents, and so would not be expected 
to traverse multiple SPE grid boxes over the course of a day (Ollitrault and de Verdière, 2014).

We perform a number of direct comparisons and calculate several evaluation metrics on the temporally-averaged 
PAL-SPE spatial matches. Contingency table statistics (Probability of detection, POD, False alarm ratio, FAR, 
and Heidke Skill Score, HSS) are calculated using scaled detection thresholds obtained using Equation 1 from 
Tan et al. (2017) using a spatial resolution of 0.1° (the coarsest among the SPEs). This results in threshold values 
of 0.2, 0.14, 0.06, and 0.03 mm h −1 corresponding to 0.5, 1, 6, and 24 hr average RR, respectively. Calculating the 
thresholds using the lowest spatial resolution between the SPE and PAL results in the lowest, or most conserva-
tive, thresholds for detection. Bias is calculated conditionally; that is, bias is only calculated when both SPE and 
PALs indicate the presence of precipitation. To isolate latitude belts and thus rain regimes, we define the tropics 
as being equatorward of 30°N/S and extratropics as poleward of 30°N/S. Additionally, because PMW-based SPEs 
are known to struggle with frozen precipitation (Levizzani et al., 2011; Skofronick-Jackson et al., 2013), we also 
perform evaluations in the extratropics during the warm season only (boreal May–Oct).

4.  Results
4.1.  Comparing SPE With PAL

Figure 2 compares the distribution of RR from the various SPE products by showing CDFs of average RR from 
SPEs and PALs at PAL locations at 0.5, 1, 6, and 24 hr time periods. The difference between the CDFs of SPEs and 
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the PAL measurements is small, on the order of less than 1% for all RR values. At the highest temporal resolution 
(0.5 hr, Figure 2a), IMERG and PAL distributions for RR > 10 mm°hr −1 are in very close agreement, while IMERG 
and CMORPH have similar distributions at lower RR. For 1 hr RR (Figure 2b), CMORPH has fewer occurrences 
of RR > 5 mm/hr, while IMERG and PDIR-Now CDFs are slightly below the PAL distribution for all RR. As 
temporal averaging increases and therefore the average hourly RR over longer time periods decreases, CMORPH 
distributions show a better match to the PAL distribution at 6 and 24 hr (Figures 2c and 2d). IMERG and PDIR-
Now CDFs remain similar to each other, both having a smaller occurrence of low RR than PAL and CMORPH, and 
having higher occurrence of slightly higher average RR. The monthly GPCP bias correction may be contributing to 
differences between the CMORPH CDFs and those from the unadjusted IMERG and PDIR-Now products.

Figure 3 shows average annual rainfall accumulations at PAL locations for each of the 3 years studied for global, 
tropical, and extratropical oceans (solid, dashed, and dotted lines, respectively). Since the majority of the PALs 

Figure 2.  CDFs of mean RR over the global ocean from PAL, IMERG, CMORPH, and PDIR-Now at (a) 0.5 hr, (b) 1 hr, (c) 6 hr, and (d) 24hr.
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Figure 3.  Average annual precipitation accumulation at PAL locations for (a) 2013, (b) 2014, and (c) 2015 over global (solid), tropical (dashed) and extratropical 
(dotted) oceans. Inset of (b) shows CDFs of PAL hourly RR over global oceans for each year.
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are located in tropical oceans, the average accumulation over global oceans is strongly related to the average 
accumulated precipitation at tropical PAL locations. In 2013 and 2014 (Figures 3a and 3b), IMERG and PDIR-
Now largely overestimated precipitation at PAL locations in all three ocean domains. CMORPH agrees with PAL 
values fairly well in 2013 for global and tropical average precipitation, and slightly underestimates tropical aver-
age precipitation in 2014. Extratropical average precipitation from CMORPH in both 2013 and 2014 is slightly 
overestimated. In 2015 (Figure 3c), all three SPEs underestimated precipitation at PAL locations both globally 
and in the sub-basins, with the exception of PDIR-Now in the extratropics starting in October. This difference in 
SPE behavior in 2015 versus 2013 and 2014 is hypothesized to be related to the presence of a strong El Nino that 
began in spring of 2015, whereas 2013 and 2014 were both ENSO Neutral years. This is supported by CDFs of 
rain rate in 2015 that have less frequent non-zero precipitation and fewer high RRs than those in 2013 and 2014 
(Figure 3b inset) and follows previous research that indicated SPE performance is related to the characteristics of 
the precipitation itself (Adhikari et al., 2019; Guilloteau et al., 2018; Petkovic et al., 2019).

4.2.  Evaluation Metrics

Figure  4 shows several standard verification metrics calculated for the SPEs using PALs as the reference. 
Compared to the global oceans, both IMERG and PDIR-Now have larger magnitude biases in the tropics at all 
temporal resolutions (except 0.5 hr for IMERG), while bias magnitudes for CMORPH are similar in all locations 
(Figure 4a). Conditional biases in the extratropics are lower, but not necessarily better, than global and tropical 
biases (i.e., less positive high biases, but more negative low biases). These extratropical low biases seem to be 
driving the global low bias values at 0.5 and 1 hr periods in IMERG, and also moderating the high bias PDIR-
Now exhibits in the tropics to produce a lower positive value over the global oceans.

POD increases with increasing temporal scale (Figure 4b), but the manner of increase is regionally dependent. In 
the global and tropical oceans, there is a sharp increase in values starting at 1 hr, while the extratropical oceans 
have similar values at 0.5, 1, and 6 hr, with a large increase at 24 hr. Somewhat surprising is the slight decrease 

Figure 4.  Evaluation statistics for IMERG (blue), CMORPH (orange), and PDIR-Now (green) compared to PAL at 0.5, 1, 6, and 24 hr. (a) Normalized Bias, (b) POD, 
(c) FAR, (d) HSS, (e) RMSE, and (f) Correlation Coefficient. Statistics are calculated over global oceans (solid), tropical oceans (dashed), extratropical oceans (dotted), 
and extratropical warm season (May-Oct) only (dash-dotted).
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in POD in the extratropics at 6 hr for both IMERG and CMORPH. IMERG displays the highest POD of all SPEs 
for all temporal scales and regions, while CMORPH has only slightly lower values. POD for all SPEs is highest 
in the extratropics, and lowest in the tropics, with smaller differences between the regions at 6 and 24 hr. POD 
during the extratropical warm season is slightly lower than year-round.

Smaller variations are noted between SPEs for FAR (Figure 4c) than for POD, with decreasing variations in 
statistics between products or between regions at larger temporal scales. FAR at hourly and half-hourly scales is 
quite high, and decreases sharply with increasing temporal scale. IMERG and CMORPH FAR are fairly similar 
globally and in the tropics, with IMERG having somewhat higher FAR than CMORPH. There are slightly larger 
variations in FAR between the products in the extratropics. While FAR is highest for CMORPH and IMERG in 
the tropics, PDIR-Now has the highest FAR in the extratropics. PDIR-Now also exhibits the smallest regional 
variations in FAR at all temporal scales.

HSS is low for all SPEs (Figure 4d), with CMORPH having a higher HSS than IMERG in the extratropics at 
sub-daily scales, and CMORPH and IMERG having more similar values at daily scale in all regions. Regional 
differences between SPEs for all statistics are largest at higher temporal resolution. Like POD, HSS also shows a 
slight unexplained decrease in skill for the PMW-based SPEs in the extratropics at 6 hr.

Root Mean Square Error (RMSE, Figure  4e) decreases with increasing temporal scale for all SPEs. IMERG 
exhibits the highest RMSE values, with PDIR-Now having similar RMSE values to IMERG except at hourly 
scales in the extratropics, where PDIR-Now has slightly higher RMSE than IMERG. CMORPH has the lowest 
RMSE values at all temporal scales, and also exhibits the smallest variations in RMSE between ocean regions 
compared to the other SPEs. For all of the SPEs, correlation coefficients (Figure 4f) in the extratropics are much 
higher than in the tropics or globally, and within the extratropical oceans, the year-round values are higher than 
those during the warm season only. In the extratropics, the PMW-based SPEs again indicate a slight degradation 
in performance at 6 hr RR, while in the tropical and global oceans correlation coefficient increases steadily with 
increasing temporal scale.

5.  Discussion and Conclusions
To our knowledge, this study represents the most comprehensive comparison of PAL RR measurements to SPEs 
over oceans. SPEs continue to be a key source of oceanic precipitation information; however, our understanding 
of their performance for this purpose is limited by insufficient in-situ observations. While the PALs are prone to 
many of the same issues as existing oceanic precipitation observations (e.g., relatively low spatial coverage and 
thus large sampling bias, bias toward tropical placement), they have several advantages that can help increase our 
understanding of SPE performance over ocean. First is the 5 km spatial footprint of the PAL when drifting at a 
depth of 1 km which is similar in size to the grid spacing of SPE products. Thus, PAL and SPE data are relatable 
areal precipitation estimates. Second, the deployment of PALs on drifting Argo floats allows for some evaluation 
of SPEs in oceanic regions not previously covered by field campaigns or moorings.

SPEs compared more favorably to PALs when data were averaged to coarser temporal resolution (e.g., >=6 hr), 
consistent with previous studies. Numerically, normalized bias values for all SPE products increased with 
increasing temporal scale. For the PMW-based products, this increase in bias involved a change in sign from low 
bias at high temporal resolution to slight positive bias at longer timescales, while PDIR-Now biases were posi-
tive everywhere except at 1 hr in the extratropics. Because we considered the conditional bias, we hypothesize 
that biases are more positive in the tropics due to the SPEs correctly identifying deep organized convection but 
overestimating RR. In the extratropics, where lighter stratiform precipitation is more common, we hypothesize 
that the larger spatial extent of precipitating systems results in a higher likelihood of precipitation being detected, 
but that weak ice scattering signals in the PMW retrieval algorithms results in lower retrieved RR than observed, 
and thus low biases. This notion is supported by the contrast in low tropical POD and higher extratropical POD 
at high temporal resolution. CMORPH, on the other hand, consistently underestimates at all but daily temporal 
scales. The cause for this, as well as the explanation for why the PMW SPEs have degraded validation statistics 
at 6 hr temporal scale versus 1 hr are unclear.

Potential uncertainties in the reference data set may also impact the evaluation results. In this case, we specifically 
note that the linear interpolation of PAL geolocation in between surface location fixes introduces small uncer-
tainties in the location of the PAL at a given time. To test the possibility of SPE-to-PAL location mismatch, the 
analysis was repeated using the neighborhood maximum (NM) technique (Schwartz, 2017) on all SPE grid boxes 
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surrounding the box containing the PAL at a given time. This approach yielded the same or slightly degraded 
results from those shown in Section 4, and therefore we conclude that location mismatch between the SPE and 
PAL is likely not a large source of uncertainty in the results.

While both CMORPH and IMERG are predominantly based on retrieved RR from PMW observations, PDIR-
Now is IR-only. As such, comparing PDIR-Now performance to that of the PMW-based products is not an 
“apples-to-apples” comparison. Finally, although PAL data used in this study contains observations in both the 
tropical and extratropical oceans, there is far more PAL data available in the tropics, which tend to dominate the 
global ocean results.

Data Availability Statement
CMORPH Version 1.0 30 min 8 km data can be obtained from the National Centers for Environmental Infor-
mation (NCEI) at https://doi.org/10.25921/w9va-q159. IMERG V6 was obtained via NASA Earthdata Search: 
https://search.earthdata.nasa.gov/search?q=GPM_3IMERGHH_06 (requires registration). PDIR-Now is availa-
ble from the Center for Hydrometeorology and Remote Sensing (CHRS) Data Portal at https://chrsdata.eng.uci.
edu/. PAL data is archived at NASA (https://doi.org/10.5067/GPMGV/PAL/DATA101).
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